摘要: |
基于胶州湾1995年5航次的生态动力学综合实验观测,建立了一个水层-底栖生态系耦合的动力学箱式模型,其中水层亚模型包括浮游植物、浮游动物、无机氮、无机磷以及DOC、POC和溶解氧7变量,底栖部分包括大型、小型底栖生物、细菌、碎屑及无机氮和磷6变量。模型考虑了海面太阳辐照度变化、海水及底泥温度变化,以及营养盐与DOC陆源流入的影响,利用该模型成功地模拟了胶州湾北部各生态变量的季节变化特征。同吴增茂等(1999)水层模型模拟结果相比可以看出,耦合模型的结果更加合理。 |
关键词: 浅海生态动力学模型 胶州湾 水层-底栖耦合生态系统 季节变化模拟 |
DOI: |
分类号: |
基金项目:国家教委关于海洋生态动力学预研究专项基金;国家自然科学基金资助项目,49790010号 |
|
SIMULATION ANALYSES ON THE PELAGIC-BENTHIC COUPLING ECOSYSTEM,NORTHERN JIAOZHOU BAY |
WU Zeng Mao1, ZHAI Xue Mei1, ZHANG Zhi Nan2, YU Guang Yao1, ZHANG Xin Ling1, GAO Shan Hong1
|
1.College of Physical and Environmental Oceanography, Ocean University of Qingdao, Qingdao, 266003;2.College of Marine Biology Science, Ocean University of Qingdao, Qingdao, 266003
|
Abstract: |
Based on the 5 cruises experiment data of the ecosystem dynamics of Jiaozhou Bay in 1995, a pelagic-benthic coupling ecosystem model is built. The pelagic submodel consists of seven state variables: Phytoplankton, Zooplankton, TIN, TIP, DOC, POC and dissolved oxygen (DO). The benthic submodel includes macro-benthos, meiobenthos, bacteria, detritus and TIN and TIP in the sediment. The effects of solar radiation, water temperature and bottom temperature, nutrient exudation from sea bottom and inflow from land are considered. The model results show that there is a good consistence in annual variation of phytoplankton concentration with the observations. The variation phase of zooplankton concentration is reasonable, and the peak value which happens within July to September is consistent with the observations in recent years. The annual variation of TIN, TIP, DOC, POC, DO, macro-benthos and meio-benthos are also reasonable. In general, seasonal variations of the ecosystem state variables of Jiaozhou Bay are successfully simulated by the model. Comparing the simulated results with the pelagic ecosystem model of Jiaozhou Bay (Wu et al, 1999), it is found that the results of the coupling model represent a significant improvement. |
Key words: Shallow sea ecosystem model, Jiaozhou Bay, Pelagic-benthic coupling ecosystem, Seasonal variation simulation |