引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  Download reader   Close
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 7951次   下载 8499 本文二维码信息
码上扫一扫!
分享到: 微信 更多
海洋底边界层中实测海流的垂直分布Ⅱ·潮流边界层
乐肯堂, 庄国文, 宋金宝, 侯一筠, 朱兰部
中国科学院海洋研究所
摘要:
为了满足海洋工程设计的需要,作者从理论上研究了海底以上1—2m处潮流边界层的结构。把传统上用于稳定海流的底Ekman层理论发展成为用于潮流运动的振荡Ekman边界层,给出了潮流Ekman方程的解析解[式(32)—(35)],提出了对数边界层中潮流运动的方程组(式4—8)及其约束条件(式48),并给出了潮流Ekman层与潮流对数边界层的匹配条件(式43),还给出了计算浅海潮流垂直分布的解析表达式(36)—(39)。
关键词:  潮流,边界层,垂直分布
DOI:10.11693/hyhz200302009009
分类号:
基金项目:“九五”中国科学院资源与环境研究重大资助项目,KZ951-A1-405号和中国科学院百人计划资助项目,L18010110号
THE VERTICAL DISTRIBUTIONS OF OCEAN CURRENTS IN THE BOTTOM BOUNDARY LAYER OF SHELF SEA Ⅱ·THE BOTTOM BOUNDARY LAYER OF TIDAL CURRENTS
LE Ken-Tang, ZHUANG Guo-Wen, SONG Jin-Bao, HOU Yi-Jun, ZHU Lan-Bu
Institute of Oceanology, The Chinese Academy of Science
Abstract:
The observed ocean currents are generally decomposed into two components: residual and tidal currents. In the previous paper (Part I) we discussed the vertical distribution of residual currents with the help of the stationary boundary layer theory. Since the stationary theory cannot be applied to tidal currents due to their oscillatory properties, in this paper we consider both the tidal Ekman layer and logarithmic layer to be an oscillatory boundary layer. The momentum equation of the tidal Ekman layer can be written as i(σ + f)~R+ = (d/dζ2)〔KV(d~R+/dζ2)〕(1) -i(σ - f)~R- = (d/dζ2)〔KV(d~R-/dζ2)〕 where the quantity ~R+ respresents a velocity vector of constant magonitude whose direction rotates anticlockwise with frequency σ, when viewed from above; the quantity ~R- likewise represents a velocity with a constant magnitude which rotates clokwise with frequency σ; f is the Coriolis parameter, KV, the eddy-viscosity cofficient; ζ2 the vertical coordinate in the Ekman layer. Apparently, the equation set (1) canbe solved analytically as given in the text. The tidal logarithmic layer equation results in the following equation: dη/dt=^z0κ2〔u0/(eη(η-1)+1)〕+η(-e+η+1)/u0[eη(η-1)+1](du0/dt) + f(^z0/κ)﹛η2(eη-η-1)v0/e〔η(η-1)+1〕﹜V0u20 (2) where κ is vonKarman’s constant equal to 0.4; ^z0 is the seabed roughness length; (u0, v0) is the velocity at the top of logarithmic layer, η= ^u0 κ/^u*, u* is the friction velocity. Obviously, equation (2) should be sloved numerically.
Key words:  Tidal currents, Boundary layer, Vertical distributions
Copyright ©  Editorial Office for Oceanologia et Limnologia Sinica    Copyright©2008 All Rights Reserved
Supervised by: China Association for Science and Technology   Sponsored by: Chinese Society for Oceanology and Limnology, Institute of Oceanology and Limnology, CAS.
Address: 7 Nanhai Road, Qingdao, China.    Postcode: 266071    Tel: 0532-82898753  E-mail: liuxiujuan@qdio.ac.cn  
Technical support: Beijing E-Tiller Co.,Ltd.