引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  Download reader   Close
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 3171次   下载 3423 本文二维码信息
码上扫一扫!
分享到: 微信 更多
流沙湾冬、春季大型海藻的微量元素分析
张才学, 白富进, 孙省利, 陈春亮
广东海洋大学海洋资源与环境监测中心
摘要:
采用微波消解法和AFA、ICP-MS 对流沙湾2008 年冬春季21 种大型海藻的微量元素进行了分析。结果表明, As、Cu、Pb、Cr、Se、Fe、Mn 在细江蓠体内含量最高, 分别为8.90、34.35、24.26、68.12、12.04、26 777.20、400.16mg/kg; Hg 在海蕴体内含量最高, 达6.90mg/kg; Zn 在鼠尾藻体内含量最高, 为277.37mg/kg; Cd 在石花菜体内含量最高, 为6.77mg/kg; Ba 在海门冬体内含量最高, 为127.02mg/kg。各藻类对各重金属元素的综合富集能力由强到弱依次为细江蓠>拟刚毛藻>水云>海蕴>鼠尾藻>海门冬>条浒苔>小珊瑚>肠浒苔>蜈蚣藻>礁膜>大石花菜>石花菜>半盐生单歧藻>团扇藻>长石莼>宽扁叉节藻>穗状鱼浒苔>喇叭菜>海头红>刚毛藻, 显示出藻类对各重金属元素综合富集能力因藻而异。各元素被藻类富集的量从大到小依次为Fe > Mn > Ba > Zn > Cr > Cu > Pb > As > Se >Cd > Hg, 显示出藻类对营养元素的富集要大于对毒性元素的富集。各藻类对各重金属的富集系数从几倍至几十万倍不等, 最高是细江蓠对Fe 的富集, 其次为海蕴对Hg 的富集, 最差为刚毛藻对Se 的富集, 其富集系数分别为204875.29、13800.00、3.48。聚类分析结果显示细江篱的富集能力最强, 是多种重金属污染海域修复的首选生态环境材料。但对重金属复合污染海域进行生物修复, 应有针对性地选择数种富集能力较强的大型海藻组成修复生物群落。
关键词:  流沙湾, 大型海藻, 重金属, 富集, 生态修复
DOI:10.11693/hyhz201001022022
分类号:
基金项目:广东省自主创新重大科技专项, 2007A032600004 号。
TRACE ELEMENTS OF SPRING AND WINTER MACROALGAE IN LIUSHA BAY
ZHANG Cai-Xue, BAI Fu-Jin, SUN Xing-Li, CHEN Chun-Liang
Ocean Resources and Environments Monitor Center, Gangdong Ocean University
Abstract:
Concentrations of As, Se, Cu, Pb, Zn, Cd, Cr, Fe, Mn, and Ba in 21 macro-algae from Liusha Bay (the west of Xuwen Country, Guangdong Province) in spring and winter 2008 were determined by Atomic Fluorescence Analyzer (AFA) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The results show that the concentration of heavy metal was enriched in different algae. For example, Gracilaria conferuoides had the highest concentration of As, Cu, Pb, Cr, Se, Fe, Mn, at 8.9, 34.35, 24.26, 68.12, 12.04, 26777.2, and 400.16mg/kg; and Nemacysti Decipientis, Sargassum thunbergii, Gelidium amansii, Asparagopsis taxiformis for Hg, Zn, Cd, Ba at 6.9, 277.37, 6.77, 127.02mg/kg, respectively. The order of heavy-metal bioaccumulation degree is: Gracilaria conferuoides > Cladophoropsis herpestica > Ectocarpus > Nemacysti Decipientis > Sargassum thunbergii > Asparagopsis taxiformis > Enteromorpha clathrata > Corallina pilulifera > Enteromopha intestinalis > Grateloupia filicina > Monostroma nitidum > Gelidium pacifieum Okam. > Gelidium amansii > Padina sp. > Ulva stenophylla > Amphiroa anceps Lamouroux > Acanthophora spicifera > Turbinaria ornata > Plocamium telfairiae > Cladophora sp.. Moreover, the magnitude order of average concentration of heavy metals accumulated in different algae is: Fe > Mn > Ba > Zn > Cr > Cu > Pb > As > Se > Cd > Hg, and the bio-enrichiable nutrients elements are richer in the algae than toxic elements. Different algae are very different in the bioaccumulation coefficient varying from several to hundreds of thousands of times, and so for each species for different heavy metals. The highest value was found in Gracilaria conferuoides for Fe enrichment with bioaccumulation coefficient at 204875.29, followed by Nemacysti decipientis for Hg at 13800.00; and the least one was Cladophora sp. for Se at only 3.48. No individual alga had strong accumulation of every heavy metal. Cluster analysis showed that Gracilaria conferuoides was the strongest one capable of bio-accumulation, and can be selected to treat heavy-metal polluted waters. However, to remedy large-area heavy-metal contaminated waters, combination of several capable algae is recommended for better ecological restoration.
Key words:  Liusha Bay, Macro-algae, Heavy metals, Accumulation, Eco-remediation
Copyright ©  Editorial Office for Oceanologia et Limnologia Sinica    Copyright©2008 All Rights Reserved
Supervised by: China Association for Science and Technology   Sponsored by: Chinese Society for Oceanology and Limnology, Institute of Oceanology and Limnology, CAS.
Address: 7 Nanhai Road, Qingdao, China.    Postcode: 266071    Tel: 0532-82898753  E-mail: liuxiujuan@qdio.ac.cn  
Technical support: Beijing E-Tiller Co.,Ltd.