|
|
|
本文已被:浏览 2218次 下载 1395次 |
码上扫一扫! |
|
“桑吉”号泄漏物质扩散与漂移数值模拟预测 |
杨德周1,2,3,4, 冯兴如1,2,3,4, 刘长华1,4, 崔煊1,2,4,5, 尹宝树1,2,3,4,5, 许灵静1,2,4,5
|
1.中国科学院海洋研究所 青岛 266071;2.中国科学院海洋环流与波动重点实验室 青岛 266071;3.青岛海洋科学与技术国家实验室海洋动力过程与气候功能实验室 青岛 266237;4.中国科学院海洋大科学研究中心 青岛 266071;5.中国科学院大学 北京 100049
|
|
摘要: |
基于ROMS(Regional Ocean Modeling System)模式,对西北太平洋海域进行了水平分辨率高达4km的水动力环境数值模拟,该分辨率可以很好地分辨我国东海陆架环流以及中尺度涡旋等过程,此外模式考虑了8个分潮,模式结果很好地再现了黄、东海陆架环流等。基于模式结果,对“桑吉”号泄漏物质可能的扩散和迁移轨迹进行了数值模拟分析。在“桑吉”号沉船位置的表、底Ekman层内,释放拉格朗日粒子和示踪物来示踪“桑吉”号泄漏物质的可能影响范围。拉格朗日粒子和示踪物模拟结果表明:在未来3个月,“桑吉”号泄漏物质对我国黄海的影响较小,其主要随着对马暖流进入日本海和随着黑潮进入日本九州以南的太平洋海域。随着冬、春的季节转换,三个月后,北风会减弱,减弱风场的试验表明,风场减弱会减少泄漏物质向黄海的输送。5月份后黄海冷水团逐渐形成,由于斜压效应,在黄海深层水中会逐渐建立起气旋式环流,从而进一步阻碍了“桑吉”号泄漏物质向黄海的输送,该气旋式环流有利于“桑吉”号泄漏物质通过对马海峡向日本海的输送,而会抑制底层泄漏物质向我国黄海西侧的输送。 |
关键词: 桑吉 扩散 东海 ROMS |
DOI:10.11693/hyhz20180500122 |
分类号:P731 |
基金项目:国家重点研发计划项目,2017YFC1404003号,2016YFC1401601号;国家自然科学基金项目,41576023号,41476019号;中国科学院先导专项项目,XDA11020104号,XDA110203052号;青岛海洋科学与技术国家实验室鳌山科技创新计划项目,2016ASKJ02-5号;国家重点研发计划项目“中澳近海生态系统健康联合评估”,2016YFE0101500号。 |
|
NUMERICAL STUDY ON THE DIFFUSION AND DRIFT OF THE LEAKED MATERIAL FROM THE SANCHI TANKER |
YANG De-Zhou1,2,3,4, FENG Xing-Ru1,2,3,4, LIU Chang-Hua1,4, CUI Xuan1,2,4,5, YIN Bao-Shu1,2,3,4,5, XU Ling-Jing1,2,4,5
|
1.Institute of Oceanology, Chinese Academy of Science, Qingdao 266071, China;2.Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Science, Qingdao 266071, China;3.Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;4.Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;5.University of Chinese Academy of Science, Beijing 100049, China
|
Abstract: |
The Regional Ocean Modeling System (ROMS) was used to simulate the hydrological characteristic in the northwestern Pacific Ocean, with the fine horizontal resolution of 4km to resolve the ocean current over the East China Sea (ECS) continental shelf and mesoscale front eddies near the mainstream of Kuroshio. In addition, eight tidal components were included in the forcing fields. The model could properly reproduce the ocean circulation pattern over the ECS continental shelf. Using passive tracer and Lagrange particles, we simulated the diffusion and Lagrange tracks of the oil leaked from the Sanchi oil tanker. We released passive tracers and particles in the surface and bottom Ekman layer to track the leaked at the sunken point. Model results show that three months later, the leaked oil had a slight impact on the Yellow Sea water. However, the leaked oil was transported into the Japan Sea through Tsushima Strait by Tsushima warm current and further to the open sea south of the Kyushu, Japan by the Kuroshio. In addition, when northerly wind decreased during winter-spring transition, fewer materials could be transported into the Yellow Sea. After May, the Yellow Sea cold water would form up during winter-spring. The cyclonical circulation around the cold water could emerge under the baroclinic thermal wind action, which would prevent the polluted water from entering the Yellow Sea. In contrast, this cyclonical circulation will enhance the transport of the polluted water into the Japan Sea through Tsushima Strait and into the open sea to the south of the Kyushu, Japan. |
Key words: Sanchi diffusion East China Sea ROMS |
|
|
|
|
|
|