本文已被:浏览 1494次 下载 1209次 |
码上扫一扫! |
|
热带西太平洋M4海山超微型浮游生物的生态分布特点 |
赵燕楚1,2,3, 赵丽1,2,4, 董逸1,2,4, 张武昌1,2,4, 李学刚1,2,4, 赵苑1,2,4, 肖天1,2,4
|
1.中国科学院海洋生态与环境科学重点实验室(中国科学院海洋研究所) 青岛 266071;2.青岛海洋科学与技术(试点)国家实验室 海洋生态与环境科学功能实验室 青岛 266237;3.中国科学院大学 北京 100049;4.中国科学院海洋大科学研究中心 青岛 266071
|
|
摘要: |
获取并分析了2017年8月热带西太平洋M4海山水体中的超微型浮游生物样品,根据流式细胞术的散射光和荧光信号,检测到M4海山各水层中普遍存在四个超微型自养浮游生物类群(聚球藻、原绿球藻、微微型真核浮游生物、微型真核浮游生物)和两个超微型异养原核生物类群(低核酸含量和高核酸含量异养原核生物)。聚球藻丰度高值出现在100m以浅;原绿球藻和微微型真核浮游生物丰度高值区在深层叶绿素最大值附近(75—150m);微型真核浮游生物和异养原核生物分布范围较广,150m以浅丰度较高。异养原核生物的生物量(1.68—11.25μgC/L)高于自养浮游生物(0.05—6.02μgC/L)的生物量。在超微型自养浮游生物中,原绿球藻生物量在100—150m水层占优势(53.83%±6.32%),微型真核浮游生物的生物量在75m以浅(58.62%±8.53%)和200—300m水层占优势(46.18%±7.82%)。在异养原核生物中,高核酸含量异养原核生物的生物量所占百分比(61.05%±3.98%)高于低核酸含量异养原核生物(38.95%±3.98%),然而在海山附近DCM层低核酸含量异养原核生物比例最高可达58.64%。冗余分析表明,超微型浮游生物的丰度与温度呈正相关,与深度和营养盐呈负相关关系。在M4海山超微型自养浮游生物分布没有明显的“海山效应”,但海山的存在会对异养原核生物两个类群生物量的比例产生影响。 |
关键词: 超微型浮游生物 丰度 生物量 M4海山 西太平洋 |
DOI:10.11693/hyhz20191200268 |
分类号:Q938.1 |
基金项目:国家科技基础资源调查专项,2017FY100803号;国家重点研发计划,2017YFA0603204号;国家自然科学基金项目,41806178号,91751202号 |
|
ECOLOGICAL DISTRIBUTION CHARACTERISTICS OF ULTRAPLANKTON IN M4 SEAMOUNT IN THE TROPICAL WESTERN PACIFIC OCEAN |
ZHAO Yan-Chu1,2,3, ZHAO Li1,2,4, DONG Yi1,2,4, ZHANG Wu-Chang1,2,4, LI Xue-Gang1,2,4, ZHAO Yuan1,2,4, XIAO Tian1,2,4
|
1.CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;2.Laboratory for Marine Ecology and Environmental Sciences, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;3.University of Chinese Academy of Sciences, Beijing 100049, China;4.Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao 266071, China
|
Abstract: |
Ultraplankton samples collected in M4 Seamount of the tropical Western Pacific Ocean in August 2017 by CTD were analyzed in flow cytometry in laboratory. Autotrophic ultraplankton groups (Synechococcus, Prochlorococcus, picoeukaryotes, nanoeukaryotes) and two groups of heterotrophic prokaryotes (low and high nucleic acid content heterotrophic prokaryotes) were distinguished based on the scatter and fluorescence properties. High abundance of Synechococcus was observed in the upper 100m water column. Prochlorococcus and picoeukaryotes exhibited maximum abundance in the deep chlorophyll maximum (DCM) layer (75—150m). Nanoeukaryotes and heterotrophic prokaryotes were found abundant in wide distribution in the upper 150m water column. The biomass of heterotrophic prokaryote (1.68—11.25μgC/L) was higher than that of autotrophic ultraplankton (0.05—6.02μgC/L). For the autotrophic ultraplankton, Prochlorococcus biomass was dominant between 100—150m (53.83%±6.32%), whereas nanoeukaryotes biomass was dominant in upper 75m (58.62%±8.53%) and 200—300m layers (46.18%±7.82%). For the heterotrophic prokaryotes, the percentage of high nucleic acid content heterotrophic prokaryotes biomass (61.05%±3.98%) was higher than that of low nucleic acid ones (38.95%±3.98%). However, the proportion of low nucleic acid content heterotrophic prokaryotes in DCM layer near seamount was up to 58.64%. In addition, as indicated in the redundancy analysis (RDA), the ultraplankton abundances were positively correlated to temperature and negatively correlated to depth and nutrients. No obvious “Seamount Effect” was observed in the distribution of autotrophic ultraplankton; however, the existence of M4 Seamount may affect the proportion of biomass of the two groups of heterotrophic prokaryotes. |
Key words: ultraplankton abundance biomass M4 Seamount Western Pacific |