摘要: |
鉴于台风等极端海洋环境下现场观测资料的匮乏,本文综合了多源卫星遥感和Argo浮标剖面观测资料分析了西北太平洋和南海上层海洋对超强台风Tembin(2012)的响应。Tembin引起了较强的海表面温度降低,降温主要集中在台风路径附近,最大降温为10.3℃,出现在朝鲜半岛南部的近岸海区;微波+红外遥感融合观测海表面温度数据可以弥补单一微波遥感观测在近岸海区缺测的不足,但观测海表面降温比单一微波遥感观测偏小;基于Argo观测的垂向高分辨率温盐剖面和混合参数化方法,发现台风后上层海洋混合明显增强,其混合率增强可达10倍以上。 |
关键词: 超强台风Tembin 海表面温度 微波遥感海表面温度数据 微波+红外遥感融合海表面温度数据 Argo浮标 混合率 |
DOI:10.11693/hyhz20191200276 |
分类号:P733 |
基金项目:国家重点研发计划,2017YFC1404101号;国家自然科学基金,41876011号,U1706216号;印-太海洋环境变异与海气相互作用,GASI-IPOVAI-01-03号。 |
|
SUPER TYPHOON TEMBIN (2012) INDUCED SEA SURFACE COOLING AND ENHANCED DIAPYCNAL MIXING IN THE NORTHWEST PACIFIC OCEAN |
GUAN Shou-De1,2,3, HOU Yi-Jun2,4
|
1.Physical Oceanography Lab/IAOS, Ocean University of China, Qingdao 266100, China;2.Laboratory for Ocean and Climate Dynamics, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;3.Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China;4.Key Laboratory of Ocean circulation and waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
|
Abstract: |
To the issue of lacking field observations under typhoon conditions, the upper ocean response to super typhoon Tembin (2012) was examined in the western North Pacific and South China Sea using remote-sensing sea surface temperature from multiplatform satellites and upper ocean temperature and salinity profiles observed by Argo floats. Significant sea surface temperature (SST) drop was induced by Tembin and was mainly located along the track of Tembin with a maximum drop of 10.3℃ occurred south of the Korea peninsula. Compared to the MW OI SST product, MW+IR OI SST product could capture the dramatic SST cooling in coastal waters, but underestimate the typhoon-induced SST cooling along the typhoon track. Based on the temperature and salinity profiles in high vertical resolution by Argo floats and fine-scale parameterization method, the diapycnal diffusivity before and after typhoon was estimated. It was found that the diapycnal diffusivity was significantly enhanced for more than 10 times after typhoon. |
Key words: super typhoon Tembin sea surface temperature MW OI SST MW+IR OI SST Argo floats diapycnal diffusivity |