本文已被:浏览 1376次 下载 1326次 |
码上扫一扫! |
|
海滩修复工程影响下的低能海岸波浪能量时空分布特征研究 |
温昌麒1,2, 朱君1,3, 蔡锋1,3, 王立辉2, 戚洪帅1,3, 刘建辉1, 雷刚1,3, 赵绍华1
|
1.自然资源部第三海洋研究所 厦门 361005;2.福州大学 土木工程学院 福州 350108;3.福建省海洋生态保护与修复重点实验室 厦门 361005
|
|
摘要: |
本研究基于第三代海浪模式SWAN(Simulating Wave Nearshore),对茅尾海及其邻近海域波浪场进行了为期1 a的数值模拟,利用实测资料验证了该模型的可靠性。根据模型计算结果分析了茅尾海海域波浪要素的时空分布特征,在此基础上进一步探讨了波浪能量的输入耗散过程以及海滩修复对波浪能量空间分布的影响。研究发现茅尾海海域年平均有效波高空间分布不均,湾外年平均有效波高约0.2—0.4 m,湾内仅0.05—0.15 m,且存在较明显的季节变化特征,夏季波高大于冬季。研究区海域夏季波能输入与耗散项均大于冬季,全年主要的波能耗散过程为底摩擦耗散且空间分布不均,存在波能耗散密集区和稀疏区。海滩修复前后海滩前沿波浪能量分布变化显著,海滩修复后滩面前沿纵向轴线分布波高平均增加23.7%,波能增加63.0%,横向轴线上波高增加百分比随离岸距离的变大而逐渐减小,最大波高增加百分比为13.9%,最大波能增加43.8%。研究结果表明合理的海滩修复工程能够有效提升作用于滩面的波浪能量,从而改善修复海滩的动力条件,降低海滩泥化风险,有利于提高海滩质量。该研究可为低能海岸的海滩修复工程提供一定的科学依据。 |
关键词: 低能海岸 海滩修复 波浪能量 时空变化 SWAN模型 |
DOI:10.11693/hyhz20200300104 |
分类号:P731 |
基金项目:国家自然科学基金项目,41930538号;福建省自然科学基金项目,2018J01061号,2018Y0060号;自然资源部第三海洋研究所基本科研业务费资助项目,海三科2018003号。 |
|
SPATIAL AND TEMPORAL DISTRIBUTION OF WAVE ENERGY ON LOW ENERGY COASTS UNDER THE EFFECT OF BEACH RESTORATION PROJECT |
WEN Chang-Qi1,2, ZHU Jun1,3, CAI Feng1,3, WANG Li-Hui2, QI Hong-Shuai1,3, LIU Jian-Hui1, LEI Gang1,3, ZHAO Shao-Hua1
|
1.Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;2.School of Civil Engineering, Fuzhou University, Fuzhou 350108, China;3.Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, China
|
Abstract: |
Using the third-generation wave model SWAN(Simulating Wave Nearshore), the wave field of Maowei Sea, Qinzhou, Guangxi, South China and its adjacent sea areas was numerically simulated for one year, and the reliability of the model was verified using measured data. The temporal and spatial distribution characteristics of wave elements in the Maowei Sea area were analyzed. The input and dissipation process of wave energy and the effect of beach restoration on the spatial distribution of wave energy were discussed. Results show that annual average significant wave height in the Maowei Sea is unevenly distributed. The annual average significant wave height outside the bay is 0.2-0.4 m, and only 0.05-0.15 m in the bay, displaying obvious seasonal changes. The wave height in summer is greater than that in winter. The summer wave energy input and dissipation terms in the study area are greater than those in winter. The main wave energy dissipation process throughout the year is bottom friction dissipation, and the remaining dissipation terms are relatively small. At the same time, the spatial distribution of wave energy dissipation is uneven with dense and sparse areas. The wave energy distribution of the beach front edge changed significantly before and after the beach restoration. After the beach restoration, wave height on the horizontal axis distribution of the beach front edge increased by an average of 23.7% and the wave energy by 63.0%. The increased percentage of wave height on the vertical axis decreased with increasing offshore distance. The maximum increased percentage of wave height was 13.9%, and the maximum wave energy increased by 43.8%. In addition, it is believed that reasonable beach restoration works can effectively increase the wave energy acting on the beach surface, thereby enhancing the dynamic conditions of the restored beach, reducing the risk of beach mudification, and improving the beach quality. This research can provide a scientific basis for restoration works in a low-energy coast. |
Key words: low energy coast beach restoration wave energy temporal-spatial change SWAN model |