摘要: |
非还原性二糖海藻糖及其代谢物是调控植物生长发育和逆境响应的信号分子。本研究以大型海藻龙须菜(Gracilariopsis lemaneiformis)为对象,从基因转录、蛋白和酶活性3个水平探讨了海藻糖合成酶——海藻糖-6-磷酸合成酶(TPS)对高温、高盐及渗透胁迫的响应。龙须菜中4条TPS序列均具有TPS家族保守结构域(Glyco-transf-20)和TPP家族保守结构域(Trehalose-PPase),且属于Class I亚家族。在转录水平上,高盐胁迫主要促进了TPS1、TPS2和TPS4基因的表达,而渗透胁迫则总体抑制了TPS1、TPS2和TPS3基因的表达。在高盐胁迫48 h时,TPS1蛋白含量升高到对照组的2.03倍。在高温和高盐胁迫24 h时,TPS活性升高,而在高盐胁迫48 h及渗透胁迫条件下酶活性降低。可见海藻糖-6-磷酸合成酶参与了龙须菜抗高温和高盐胁迫的应答,但对渗透胁迫不敏感。该研究为提高龙须菜抗逆性及培育抗逆龙须菜品种提供了参考。 |
关键词: 龙须菜 海藻糖 海藻糖-6-磷酸合成酶 非生物胁迫 |
DOI:10.11693/hyhz20200700225 |
分类号:S968.43 |
基金项目:国家重点研发计划项目,2018YFD0901502号;国家自然科学基金项目,31672674号;浙江省自然科学基金项目,LY19C190003号,LQ20C190002号;宁波市科技局项目,2019B10009号。 |
|
RESPONSE OF TREHALOSE-6-PHOSPHATE SYNTHASE (TPS) TO ABIOTIC STRESS IN GRACILARIOPSIS LEMANEIFORMIS |
ZHANG Ying-Ying, LYU Yan, XUAN Wen-Yan, ZHANG Xiao-Qian, XU Nian-Jun, SUN Xue
|
School of Marine Sciences, Ningbo University, Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo 315211, China
|
Abstract: |
The non-reducing disaccharide trehalose and its metabolites are signaling molecules that regulate the growth, development, and stress response. In this paper, the responses of trehalose synthase (TPS) to high-temperature, high-salinity, and osmotic stresses were investigated at three levels of gene transcription, protein, and enzyme activity of seaweed Gracilariopsis lemaneiformis. Four TPS sequences of G. lemaneiformis contained both TPS-family conserved domains (Glyco-Transf-20) and TPP-family conserved domains (Trehalose-PPase), and belong to the Class I subfamily of TPS. At the transcriptional level, high-salinity stress mainly promoted the expression of TPS1, TPS2, and TPS4, while TPS1, TPS2, and TPS3 were almost suppressed under osmotic stress. At the protein level, TPS1 was promoted a 2.03-fold increment at 48 h under high-salinity compared with the control. TPS activity was increased at 24 h under high-temperature and high-salinity stresses, and was inhibited at 48 h under high-salinity stress and at 24-48 h under osmotic stress. In summary, the above results indicate that TPS was involved in the response of G. lemaneiformis to high-temperature and high-salinity stresses, but was not sensitive to osmotic stress. This study will provide a reference for improving the anti-adversity or breeding the stress-resistant varieties of G. lemaneiformis. |
Key words: Gracilariopsis lemaneiformis trehalose trehalose-6-phosphate synthase abiotic stress |