引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  Download reader   Close
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1364次   下载 920 本文二维码信息
码上扫一扫!
分享到: 微信 更多
内孤立波与平顶海山作用的能量耗散实验研究
郭钰林1, 孟静2, 徐昱3, 贾村4, 刘娟5, 陈旭1, 于宇君1
1.中国海洋大学物理海洋教育部重点实验室 青岛 266003;2.中国海洋大学海洋与大气学院 青岛 266100;3.中国海洋大学工程学院 青岛 266100;4.自然资源部第三海洋研究所海洋动力研究室 厦门 361005;5.北京应用气象研究所 北京 100029
摘要:
内波破碎引起的能量耗散和混合是海洋内部的重要物理过程。通过在二维内波水槽进行实验室实验,分析内波与地形的作用,探究内孤立波与平顶海山地形作用时波要素、能量以及湍耗散率的时空变化。本实验利用重力塌陷法在两层流体中制造第一模态内孤立波,通过粒子图像测速技术(particle image velocimetry,PIV)获得内孤立波与地形作用时的流场结构,定量分析整个作用过程。结果表明,地形会改变波形甚至引起破碎,内波与地形作用时,振幅和能量密度会在内孤立波爬坡时迅速增大,在地形前缘产生强烈能量耗散。入射波的能量与塌陷高度呈二次函数关系,透射波能量随地形升高减小,反射波能量随地形升高增大。地形前缘局地湍耗散率极值时间序列在部分实验中呈双峰结构,对应内孤立波界面处剪切加强引起湍流耗散和波后缘翻转破碎。破碎引起的地形前缘区域平均湍耗散率量级在10-5 m2/s3,局地湍耗散率极值与入射波振幅呈指数关系,所有实验中局地湍耗散率的最大值接近10-3 m2/s3量级。
关键词:  内孤立波破碎  能量耗散  湍耗散  粒子图像测速
DOI:10.11693/hyhz20210100004
分类号:P731.24
基金项目:国家海洋局海洋遥测工程技术研究中心开放基金,2017005号;海洋环境保障创新开放基金,HHB003号;中央高校基本科研业务费专项,202051015号。
LABORATORY STUDY ON ENERGY DISSIPATION OF INTERNAL SOLITARY WAVES IN GUYOTS
GUO Yu-Lin1, MENG Jing2, XU Yu3, JIA Cun4, LIU Juan5, CHEN Xu1, YU Yu-Jun1
1.Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266003, China;2.College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China;3.College of Engineering Oceam University of China, Qingdao 266100, China;4.Third institute of oceanography, MNR, Ocean Dynamic Lab, Xiamen 361005, China;5.Beijing Institute of Applied Meteorology, Beijing 100029, China
Abstract:
Energy dissipation and mixing induced by internal wave breaking are important dynamic physical processes in the ocean. Upon 2-dimensional laboratory experiments in an internal wave tank, the evolution of an interfacial internal solitary wave (ISW) passing by an underwater trapezoidal topography mimicking a guyot was examined. The temporal and spatial variation of wave parameters, energy and turbulent dissipation rate during ISW interaction with guyots were analyzed. The first mode (Mode-1) ISW was generated in the two-layered stratified fluid system through standard lock-release method. The flow field structure of the internal solitary waves and the topography were obtained by particle image velocimetry (PIV), and the whole process was quantitatively analyzed. The velocity field of the Mode-1 ISW propagation was visualized by PIV. Results show that if the topography was moderately large, the wave was observed to shoal and break. The amplitude and energy could increase rapidly when the ISW climbed to the slope, during which intense energy dissipation appeared in the front edge of the topography. The energy of incident wave was in quadratic function to the collapse height, and the energy of transmitted wave and reflected wave decreased with the rise of topography. The time series of the local dissipation extremum shows bimodal peaks in several experiments, which corresponds to the shear dissipation boosting and plunging breaker. The average dissipation rate in the front edge of the topography was 10-5 m2/s3 in magnitude and the maximum of local turbulence dissipation rate was close to the magnitude of 10-3 m2/s3. The extreme value of local turbulent dissipation rate was exponential to the incident wave amplitude.
Key words:  internal solitary wave breaking  energy dissipation  turbulent dissipation  particle image velocimetry (PIV)
Copyright ©  Editorial Office for Oceanologia et Limnologia Sinica    Copyright©2008 All Rights Reserved
Supervised by: China Association for Science and Technology   Sponsored by: Chinese Society for Oceanology and Limnology, Institute of Oceanology and Limnology, CAS.
Address: 7 Nanhai Road, Qingdao, China.    Postcode: 266071    Tel: 0532-82898753  E-mail: liuxiujuan@qdio.ac.cn  
Technical support: Beijing E-Tiller Co.,Ltd.