引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  Download reader   Close
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 848次   下载 1425 本文二维码信息
码上扫一扫!
分享到: 微信 更多
珠江河网横向汊道水位演变特性及原因探究
李博1,2,3,4, 蔡华阳1,2,3,4, 杨昊1,2,3,4, 王博芝1,2,3,4, 刘锋1,2,3,4, 魏稳1,2,3,4, 欧素英1,2,3,4
1.中山大学海洋工程与技术学院 河口海岸研究所 广东广州 510275;2.河口水利技术国家地方联合工程实验室 广东广州 510275;3.广东省海岸与岛礁工程技术研究中心 广东广州 510275;4.南方海洋科学与工程广东省实验室(珠海) 广东珠海 519000
摘要:
珠江河网横向汊道体系是维持三角洲河网动力平衡的独特地貌结构,具有泄洪纳潮的重要功能,探讨该结构水位的阶段性演变及其影响因子辨识是河口动力学研究的重要科学问题。采用流量驱动的R_TIDE数据驱动模型,对研究区域内“容桂-凫洲水道”和“潭洲-前航道”两个典型横向汊道体系共8个站点的日均水位序列进行分解,分离出由上游流量驱动引起的水位变化及地形和海平面共同驱动的水位变化。结果表明,经过水库的调蓄作用,在“容桂-凫洲水道”,流量驱动导致冬季日均水位抬升(平均为0.04 m),其余三季日均水位下降;“潭洲-前航道”则由于北江流量增大导致流量驱动的日均水位均有不同程度的抬升(平均为0.17 m)。由于地形下切和海平面上升,地形和海平面共同驱动的日均水位变化普遍为负值(除南沙、黄埔站分别为0.11、0.07 m),“容桂-凫洲水道”中下部河段在秋季受海平面上升(秋季海平面高程最大)影响大于河床地形下切效应导致水位抬升,而其余站点主要受到疏浚、采砂等人类活动引起的地形下降影响,水位下降,且上游变化幅度明显大于下游;对径潮动力方差贡献率的分析结果表明,“容桂-凫洲水道”和“潭洲-前航道”夏季径流对水位的方差贡献率平均分别减小10%和15%,冬季则平均分别减小5%和3%,显示出强人类干预后总体呈现泄洪压力减小,纳潮能力增强的变化趋势。
关键词:  流量  水位梯度  R_TIDE数据驱动模型  流量驱动  地形和海平面共同驱动
DOI:10.11693/hyhz20220600164
分类号:P343.5
基金项目:国家自然科学基金项目,52279080号;广州市科技计划项目,202002030452号,202102020450号。
MECHANISM AND EVOLUTION OF WATER LEVEL CHANGES IN THE TRANSVERSE CHANNEL SYSTEM IN THE ZHUJIANG (PEARL) RIVER CHANNEL NETWORKS
LI Bo1,2,3,4, CAI Hua-Yang1,2,3,4, YANG Hao1,2,3,4, WANG Bo-Zhi1,2,3,4, LIU Feng1,2,3,4, WEI Wen1,2,3,4, OU Su-Ying1,2,3,4
1.Institute of Estuarine and Coastal Research, School of Marine Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China;2.State and Local Joint Engineering Laboratory of Estuarine Hydraulic Technology, Guangzhou 510275, China;3.Guangdong Provincial Engineering Research Center of Coasts, Islands and Reefs, Guangzhou 510275, China;4.Southern Laboratory of Ocean Science and Engineering (Zhuhai), Zhuhai 519000, China
Abstract:
As a unique geomorphic unit among the Zhujiang (Pearl) River Channel Networks, transverse channels are vital to balance water level via flood discharge and tidal storage. A data-driven model termed R_TIDE was adopted to identify changes in averaged water level daily recorded in eight tidal stations in two typical transverse channel systems (i.e., "Ronggui-Fuzhou Channel" and "Tanzhou-Front Channel"), from which two components of water level change were extracted that driven by river discharge observed at upstream hydrological gauge stations and the combined effects of landform and sea level fluctuation. Results show that for the first component, the gauged daily average water levels in "Ronggui-Fuzhou Channel" are mainly controlled by dam construction, leading to an increase of about 0.04 m on average in winter and a decrease in other seasons, while in "Tanzhou-Front Channel", water levels are affected by river discharge from the Beijiang River (a tributary to Zhujiang River), building up an increase of about 0.17 m on average. For the second component, water level decreases were observed in most of stations, except for Nansha and Huangpu stations where minor increase of 0.11 m and 0.07 m, respectively, was shown. Specifically, water level increase in the mid-lower reaches of "Ronggui-Fuzhou Channel" in autumn is mainly by the sea water level rise, showing greater effect than that of down cutting of riverbed. In the rest of the stations, water level decreases were observed, which could be explained by human activities such as channel dredging and sand mining, leading a much more considerable change at upstream reach than that at downstream reach. In addition, the variance contribution rate of riverine dynamics to water levels in "Ronggui-Fuzhou Channel" and "Tanzhou-Front Channel" decreased by 10% and 15% on average in summer, and by 5% and 3% in winter, respectively, showing a tendency of reduced pressure of flood discharge and increased tidal storage after intensive human interventions.
Key words:  river discharge  water level slope  R_TIDE data-driven model  river discharge forcing  combined effect of landform and sea water level
Copyright ©  Editorial Office for Oceanologia et Limnologia Sinica    Copyright©2008 All Rights Reserved
Supervised by: China Association for Science and Technology   Sponsored by: Chinese Society for Oceanology and Limnology, Institute of Oceanology and Limnology, CAS.
Address: 7 Nanhai Road, Qingdao, China.    Postcode: 266071    Tel: 0532-82898753  E-mail: liuxiujuan@qdio.ac.cn  
Technical support: Beijing E-Tiller Co.,Ltd.