引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  Download reader   Close
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 661次   下载 1204 本文二维码信息
码上扫一扫!
分享到: 微信 更多
pH胁迫对菲律宾蛤仔(Ruditapes philippinarum)耗氧率、排氨率、免疫和抗氧化酶活性以及组织形态的影响
陈强1,2, 林毅1,2, 黎中宝1,2, 黄张帆1,2, 孔鲁闽1,2, 周思顺1,2, 龙中英1,2
1.集美大学水产学院 福建厦门 361021;2.福建省海洋渔业资源与生态环境重点实验室 福建厦门 361021
摘要:
随着人类工业迅速发展, CO2大量排放, 引起了海洋的酸化效应, 不仅导致了全球气候变暖, 也严重危害了海洋生物的生态健康。以菲律宾蛤仔(Ruditapes philippinarum)为研究对象, 研究pH变化对菲律宾蛤仔耗氧率、排氨率、鳃组织结构以及鳃和内脏团的免疫、抗氧化酶活性的影响。将菲律宾蛤仔置于酸化海水(pH 6.4、7.1和7.7)中, 以自然海水(pH 8.1)为对照。结果表明: 耗氧率和排氨率随着pH的升高或降低而降低, 在pH=8时达到最大值; 6.4酸化组蛤仔鳃组织结构损伤严重, 鳃丝间距扩大, 纤毛黏合; 鳃组织碱性磷酸酶(AKP)第42天所有酸化组活性显著高于对照组(P<0.05), 所有酸化组溶菌酶(LZM)和酸性磷酸酶(ACP)活性显著低于对照组(P<0.05), 7.7酸化组超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)活性和总抗氧化能力(T-AOC)显著高于对照组(P<0.05), 所有酸化组丙二醛(MDA)含量显著低于对照组(P<0.05); 内脏团7.1和7.7酸化组LZM活性显著高于对照组(P<0.05),所有酸化组T-AOC和SOD活性显著高于对照组(P<0.05), 7.1和7.7酸化组MDA含量显著低于对照组(P<0.05)。酸化致使菲律宾蛤仔耗氧率和排氨率降低, 减缓其生理活动, 降低鳃组织的免疫和抗氧化酶活性, 打破蛤仔原有的代谢水平, 会增加蛤仔患病的可能性。
关键词:  pH  菲律宾蛤仔(Ruditapes philippinarum)  耗氧率  排氨率  免疫  抗氧化
DOI:10.11693/hyhz20230100013
分类号:
基金项目:福建省自然科学基金项目,2020J01668号。
EFFECTS OF PH STRESS ON OXYGEN CONSUMPTION RATE, AMMONIA EXCRETION RATE, IMMUNE AND ANTIOXIDANT ENZYME ACTIVITY AND TISSUE MORPHOLOGY OF CLAM RUDITAPES PHILIPPINARUM
CHEN Qiang1,2, LIN Yi1,2, LI Zhong-Bao1,2, HUANG Zhang-Fan1,2, KONG Lu-Min1,2, ZHOU Si-Shun1,2, LONG Zhong-Ying1,2
1.Fisheries College, Jimei University, Xiamen 361021, China;2.Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen 361021, China
Abstract:
With the rapid development of modern industry, a large amount of carbon dioxide emissions have caused apparent acidification of the oceans, which not only results in the global warming, but also seriously endangers the ecological health of marine life. The effects of pH change on oxygen consumption rate, ammonia emission rate, gill tissue structure, immune and antioxidant enzyme activities of the gill and visceral mass of Ruditapes philippinarum were studied. The R. philippinarum was exposed to acidified seawater (pH 6.4, 7.1, and 7.7) compared to natural seawater (pH 8.1).Results showed oxygen consumption rate and ammonia excretion rate decreased with the increase or decrease of pH, and reached the maximum value at pH=8. In the 6.4 acidification group severe damage to the gill tissue structure, enlarged gill filament spacing, and cilium bonding. The activity of alkaline phosphatase (AKP) in gill tissue of 42-day all acidification groups were significantly greater than those of the control (P<0.05), less acidic phosphatase (ACP) and lysozyme (LZM) activity than control (P<0.05) in all acidification groups; the activity of superoxide dismutase (SOD), total antioxidant capacity (T-AOC), catalase (CAT), and glutathione peroxidase (GSH-Px) were significantly higher than control group (P<0.05) in 7.7 acidification group, in all acidification groups compared with the control group malondialdehyde (MDA) levels were significantly inferior (P<0.05); the activity of visceral LZM were significantly outdistance the control group (P<0.05) in 7.1 and 7.7 acidification groups, in all acidification groups T-AOC and SOD activity were significantly different from the control group (P<0.05), compared with the control group MDA was far from sufficient (P<0.05) in 7.1 and 7.7 acidification groups. Acidification reduces the rate of oxygen consumption rate and ammonia excretion rate of R. philippinarum, slows down their physiological activity, reduces the immune and antioxidant enzyme activities of gill tissue, breaks the original metabolic level of R. philippinarum and increases the possibility of disease.
Key words:  pH  Ruditapes philippinarum  oxygen consumption rate  ammonia excretion rate  immunity  antioxidant
Copyright ©  Editorial Office for Oceanologia et Limnologia Sinica    Copyright©2008 All Rights Reserved
Supervised by: China Association for Science and Technology   Sponsored by: Chinese Society for Oceanology and Limnology, Institute of Oceanology and Limnology, CAS.
Address: 7 Nanhai Road, Qingdao, China.    Postcode: 266071    Tel: 0532-82898753  E-mail: liuxiujuan@qdio.ac.cn  
Technical support: Beijing E-Tiller Co.,Ltd.