首页 | 期刊介绍 | 编委会 | 道德声明 | 投稿指南 | 常用下载 | 过刊浏览 | In English
引用本文:袁林旺,谢志仁,钟鹤翔.海平面变化的小波和自回归模型集成预测试验[J].海洋科学,2008,32(4):31-35.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1667次   下载 2284 本文二维码信息
码上扫一扫!
分享到: 微信 更多
海平面变化的小波和自回归模型集成预测试验
袁林旺1, 谢志仁1, 钟鹤翔1
南京师范大学地理科学学院
摘要:
针对海面变化预测时间序列模型中趋势组份和周期(准周期)组份的提取和预测问题, 基于吴淞站1955~2001年月平均潮位序列, 采用小波分析(WA)与自回归(AR)模型相结合的方案, 对小波分解的不同尺度分量序列, 借助于时间序列模型进行分量预测, 再对它们进行叠加建立预测模型, 进行了月平均潮位预测试验。以1955~1996年数据为基础建立模型, 1997~2001年数据作为验证, 结果表明两种方法的结合使用显示了较好的效果, 具有较高的精度。
关键词:  海平面变化  预测  小波分析(WA)  自回归(AR)模型
DOI:
分类号:
基金项目:国家自然科学基金资助项目(40171008) ; 国家973计划前期研究专项(2007CB416602)
Prediction experiment of sea-level changes based on the wavelet analysis and auto-regressive model
Abstract:
Based on the monthly average tidal records of Wusong tidal gauge station from 1955 to 2001, a prediction experiment is made using wavelet analysis (WA) and auto-regr essive( AR) models in this paper. WA provides a way of analyzing the local behavior of functions, it may be used to isolate the sea-level change records to reveal the hierarchy of features and the scaling behavior. Since components are the filtered versions of the raw data, their behavior is more regular than that of the original signal and more predictable accordingly. Using AR model to predict each component in practice we can take advantage of each significant component, the summation of all the predicted components is the predict results. Analyzing the data of 1955~1996 to predict the sea-level change of 1997~2001, comparing the prediction results with the original data, we find that these two series are fairly comparable. It was shown that the integration use of these two methods provides an efficient way to predict sea-level changes.
Key words:  sea-level change  prediction  wavelet analysis(WA)  auto-regressive(AR) model
版权所有 《海洋科学》 Copyright©2008 All Rights Reserved
主管单位:中国科学院 主办单位:中国科学院海洋研究所
地址:青岛市市南区福山路32号  邮编:266071  电话:0532-82898755  E-mail:marinesciences@qdio.ac.cn
技术支持:北京勤云科技发展有限公司