引用本文: | 刘善伟,王婉笛,李 潇,陈艳拢,张 婷.基于DRLSE模型的SAR溢油提取方法[J].海洋科学,2018,42(1):153-157. |
| |
|
|
|
本文已被:浏览 1944次 下载 1703次 |
 码上扫一扫! |
|
基于DRLSE模型的SAR溢油提取方法 |
刘善伟1, 王婉笛1, 李 潇1, 陈艳拢1,2, 张 婷3
|
1.中国石油大学(华东);2.国家海洋环境监测中心;3.国家海洋局第一海洋研究所
|
|
摘要: |
为提高海上溢油轮廓SAR提取精度, 验证了FCM(Fuzzy C-Means Algorithm)与DRLSE(Distance Regularized Level Set Evolution)模型结合的方法提取SAR溢油信息的有效性; 鉴于其无法避免细小噪音的影响以及薄油膜提取效果不好的问题, 提出了阈值和DRLSE模型结合的溢油信息提取方法, 通过阈值构建溢油区域初始轮廓, 克服了图像细小噪声对溢油提取的影响, 更有利于提取薄油膜信息, 溢油提取精度优于H/A/alpha-Wishart非监督分类方法和FCM与DRLSE模型结合的方法。 |
关键词: DRLSE 模型 SAR 溢油提取 阈值 |
DOI:10.11759/hykx20171011006 |
分类号: |
基金项目:国家重点研发计划项目(2017YFC1405600); 国家自然科学基金(41706208, 41776182); 山东省自然科学基金(ZR2016DM16) |
|
SAR oil-spill extraction method based on DRLSE model |
LIU Shan-wei,WANG Wan-di,LI Xiao,CHEN Yan-long,ZHANG Ting
|
Abstract: |
In this study, we evaluated the SAR information extraction of oil spilled at sea and the effectiveness of combining the fuzzy C-means (FCM) and distance regularized level set evolution (DRLSE) models to extract SAR oil-spill information. In light of the inability of this approach to prevent small-noise effects and its poor thin-oilfilm extraction performance, we propose a method for extracting oil-spill information that combines threshold data and the DRLSE model. With this method, the initial contour of the oil-spill region is constructed based on the threshold, which overcomes the influence of small noises on the oil extraction, and the extraction of thin-oil-film information is facilitated. Our method demonstrates better oil-extraction precision than the H/A/alpha-Wishart unsupervised classification method and the combined FCM and DRLSE models. |
Key words: DRLSE model SAR oil spill extraction threshold |
|
|
|
|
|
|