首页 | 期刊介绍 | 编委会 | 道德声明 | 投稿指南 | 常用下载 | 过刊浏览 | In English
引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 89次   下载 119 本文二维码信息
码上扫一扫!
分享到: 微信 更多
灰度共生矩阵纹理特征对SAR海冰漂移监测的增强性能研究
李小娜1,2, 张 杰2, 戴永寿1, 张 晰2
1.中国石油大学(华东) 信息与控制工程学院;2.国家海洋局第一海洋研究所
摘要:
海冰漂移监测对气候变化分析、船只航行、海上石油平台等海上活动安全作业具有重要意义。当前主流的SAR海冰漂移监测方法多是基于SAR灰度图开展的, 其受噪声、环境等因素的影响较大,导致其在海冰漂移探测时, 特征失配率高, 匹配正确率低。针对这一问题, 本文尝试利用SAR海冰纹理特征来增强海冰漂移探测性能。首先对比分析了8种纹理特征对海冰漂移探测中特征匹配的增强性能, 筛选出能够有效增强特征匹配性能的最优纹理特征; 其次进一步分析了海冰类型、入射角和分辨率对基于纹理特征的海冰漂移探测性能增强的影响。实验结果表明, 均值是最优的纹理特征, 与SAR强度图相比, 特征匹配正确率提高了约7%。
关键词:  海冰漂移  纹理特征  SAR
DOI:10.11759/hykx20170803001
分类号:
基金项目:国家重点研发计划项目(No.2016YFA0600102); 中央级公益性科研院所基本科研业务费专项资金资助项目(2014G31)
Research on the enhanced performance of texture feature for sea ice drift monitoring based on gray level co-occurrence matrices
LI Xiao-na,ZHANG Jie,DAI Yong-shou,ZHANG Xi
Abstract:
Sea ice drift monitoring is important for climate change analysis, vessel navigation, and offshore maritime safety operations. The current methods of synthetic aperture radar (SAR) sea ice drift tracking are based on SAR intensity image analysis. However, intensity images are easily influenced by noise and have a high probability of mismatching and low matching accuracy for sea ice drift detection. Considering the above problems, this paper attempts to use the SAR sea ice texture features to enhance the drift detection performance. First, the enhancement performance of eight texture features for pattern matching in sea ice drift detection is analyzed, and the optimal texture feature is selected. Then the effects of sea ice type, incident angle, and resolution on the enhanced performance of texture features are analyzed. The results show that the mean value is the optimal texture feature, and compared with the SAR intensity image analysis approach, the proposed method improves the pattern matching accuracy by about 7%.
Key words:  sea ice drift  texture feature  SAR
版权所有 《海洋科学》编辑部 Copyright©2008 All Rights Reserved
主管单位:中国科学院 主办单位:中国科学院海洋研究所
地址:青岛市南海路七号  邮编:266071  电话:0532-82898755  E-mail:bjb@qdio.ac.cn
技术支持:北京勤云科技发展有限公司