首页 | 期刊介绍 | 编委会 | 道德声明 | 投稿指南 | 常用下载 | 过刊浏览 | In English
引用本文:
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 21次   下载   
分享到: 微信 更多
基于神经网络模型的湛江湾水体有色溶解有机物的遥感估算
余果, 付东洋, 刘大召, 刘贝, 廖珊, 王立安, 张小龙
广东海洋大学
摘要:
有色溶解有机物(CDOM)是水体中重要的水质参数之一,是水色遥感重要的研究对象,如何构建适合特定区域的近海二类水体CDOM反演模型一直是国内外研究难点。本文利用2017年5月26日~29日对南海西北部海域湛江湾20个站位采集的水样和测量的光谱资料。分析归一化遥感反射率与CDOM浓度ag(400)的相关性,发现最大负相关系数出现在586nm处,选择580nm、585nm、590nm、595nm这四个波段处的归一化遥感反射率与ag(400)建立了多元线性回归模型、BP神经网络模型和RBF神经网络模型,并与其他算法模型进行对比分析。结果发现:BP和RBF神经网络模型的平均相对误差和均方根误差均远小于多元线性回归模型和其他算法模型,神经网络模型的预测值与实测值拟合效果要优于多元线性回归模型。研究表明,神经网络模型更适合于湛江湾有色溶解有机物的遥感估算。
关键词:  湛江湾  有色溶解有机物  归一化遥感反射率  神经网络模型  遥感估算
DOI:10.11759/hykx20180409001
分类号:p733.3
基金项目:国家海洋公益专项(201305019);广东省自然科学基金(2014A030313603);广东省科技计划项目(2013B030200002、2016A020222016);广东海洋大学创新强校项目(GDOU2014050226);广东省哲学社会科学规划项目( GD12YGL04);广东省普通高校优秀青年创新人才培养计划项目( 2012WYM_0077);广东海洋大学博士科研启动项目(E11097)
Remote Sensing Estimation of Colored Dissolved Organic Matter in the water body of Zhanjiang Bay Based on Neural Network Model
YU guo, FU dongyang, LIU dazhao, LIU bei, LIAO shan, WANG lian, ZHANG xiaolong
Guangdong Ocean University
Abstract:
Colored dissolved organic matter (CDOM), one of the important water quality parameters, is an important research object of ocean color remote sensing. How to construct CDOM inversion model in Case-Ⅱ Waters of coastal which is applied to particular locations has always been a research challenge at home and abroad. In this study we use the water sample extracted from 20 stations of the Zhanjiang Bay, which is the northwestern part of the South China Sea, and live spectral measurements of these stations from May 26 to 29, 2017 to analysis the correlation between normalized remote sensing reflectance and CDOM concentration (ag(400)), the maximum negative correlation coefficient appears at 586nm. The multiple linear regression model, BP neural network model and RBF neural network model were built with ag(400) and the normalized remote sensing reflectivity at this four bands of 580nm, 585nm, 590nm, 595nm, and then compared with other CDOM algorithm models. The results show that the average relative error and root mean square error of the BP and RBF neural network model were far less than other models and that the fitting effect between the predicted values of the neural network model and the measured values was better than the effect came from the multiple linear regression model. That is to say the neural network model is more suitable for the remote sensing estimation of colored dissolved organic matter in Zhanjiang Bay.
Key words:  Zhanjiang Bay, colored dissolved organic matter, normalized remote sensing reflectance, neural network model, remote sensing estimation
版权所有 《海洋科学》编辑部 Copyright©2008 All Rights Reserved
主管单位:中国科学院 主办单位:中国科学院海洋研究所
地址:青岛市南海路七号  邮编:266071  电话:0532-82898755  E-mail:bjb@qdio.ac.cn
技术支持:北京勤云科技发展有限公司