首页 | 期刊介绍 | 编委会 | 道德声明 | 投稿指南 | 常用下载 | 过刊浏览 | In English
引用本文:褚福硕,司宗尚,庞重光,俞建成.海翼水下滑翔机测流应用[J].海洋科学,2022,46(5):10-16.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 567次   下载 1166 本文二维码信息
码上扫一扫!
分享到: 微信 更多
海翼水下滑翔机测流应用
褚福硕1,2, 司宗尚1,3,4, 庞重光1,3,4, 俞建成5
1.中国科学院海洋研究所海洋环流与波动重点实验室, 山东 青岛 266071;2.中国科学院大学, 北京 100049;3.青岛海洋科学与技术试点国家实验室海洋动力过程与气候功能实验室, 山东 青岛 266237;4.中国科学院海洋大科学研究中心, 山东 青岛 266071;5.中国科学院沈阳自动化研究所, 辽宁 沈阳 110016
摘要:
水下滑翔机通过集成生物、化学、物理传感器可以测量如温度、盐度、溶解氧等多种海洋基础水文要素, 利用卫星定位系统获得实际出水速度和理论出水模型获得理论出水速度之差可以计算深度平均流。本文利用海翼水下滑翔机获得温盐场及卫星定位数据评估深度平均流, 结果显示利用温盐场获得深度平均地转流与水下滑翔机获得深度平均流相关系数达到0.95, 表明其流场的一致性, 同时根据船载观测ADCP误差分析法估算深度平均流误差约为0.036 m/s。借助深度平均流可以估算绝对地转流, 包括正压地转流和斜压地转流。我们选取了海翼水下滑翔机在南海的一组实验对流量误差进行了评估。该实验为2019年1月3日—2月16日海翼水下滑翔机自南向北穿越西沙群岛附近一个中尺度涡观测,观测结果表明, 该中尺度涡为冷涡流核, 在涡心以南, 绝对地转流为东向流, 最大流速约为0.48 m/s; 涡心以北, 绝对地转流为西向流, 最大流速约为0.47 m/s, 稍弱于南侧。受不均匀时空观测计划影响, 本文未对流量做出估计。
关键词:  水下滑翔机  深度平均流  误差分析  温盐深剖面仪
DOI:10.11759/hykx20210928003
分类号:P756
基金项目:国家重点研发计划(2016YFC0301203), 中国科学院科研仪器设备研制项(YJKYYQ20190047)
Sea Wing underwater glider depth average current
CHU Fu-shuo1,2, SI Zong-shang1,3,4, PANG Chong-guang1,3,4, YU Jian-cheng5
1.Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Laboratory for Ocean and Climate Dynamics, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China;4.Center for Ocean Mega-Science, Chinese Academy of Science, Qingdao 266071, China;5.Shenyang Institute of Automation Chinese Academy of Sciences, Shenyang 110016, China
Abstract:
By integrating biological, chemical, and physical sensors, an underwater glider can measure various marine basic hydrological elements, including temperature, salinity, and dissolved oxygen. It uses a satellite positioning system to obtain the difference between the actual and theoretical velocity models and calculates the depth average current. In this paper, a sea-wing underwater glider is used to obtain the temperature and salt fields and satellite positioning data to evaluate the depth average flow. The results show that the correlation coefficient between the depth average geostrophic velocity obtained using the temperature and salinity fields and the depth average flow obtained by the underwater glider is 0.95, indicating the consistency of its current field. Simultaneously, the depth average flow error is estimated to be approximately 0.036 m/s according to the ADCP error analysis method of Shipborne observation. The absolute geostrophic velocity can be estimated by means of depth average current, including barotropic geostrophic velocity and baroclinic geostrophic velocity. Assuming zero dynamic depth, we selected a group of experiments on the sea-wing underwater glider in the South China Sea to evaluate the current velocity error. This experiment was conducted from January 3 to February 16, 2019 when the sea-wing underwater glider traversed a mesoscale eddy near the Xisha Islands from south to north. The observation results show that the mesoscale vortex is a cold vortex core, the absolute geostrophic flow is eastward in the south of the vortex center, and the maximum velocity is approximately 0.48 m/s; in the north of the vortex center, the absolute geostrophic flow is westward, and the maximum velocity is approximately 0.47 m/s, which is slightly weaker than that in the south. Due to the influence of the uneven spatio-temporal observation plan, the transport is not estimated in this paper.
Key words:  underwater glider  depth average current  error analysis  CTD
版权所有 《海洋科学》 Copyright©2008 All Rights Reserved
主管单位:中国科学院 主办单位:中国科学院海洋研究所
地址:青岛市市南区福山路32号  邮编:266071  电话:0532-82898755  E-mail:marinesciences@qdio.ac.cn
技术支持:北京勤云科技发展有限公司