首页 | 期刊介绍 | 编委会 | 道德声明 | 投稿指南 | 常用下载 | 过刊浏览 | In English
引用本文:许晨,卢霞,桑瑜,何爽,刘景选.基于空谱融合与AlexNet算法的滨海湿地植被分类研究[J].海洋科学,2023,47(7):1-11.
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 521次   下载 555 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于空谱融合与AlexNet算法的滨海湿地植被分类研究
许晨1, 卢霞2, 桑瑜1, 何爽1, 刘景选1
1.江苏海洋大学 海洋技术与测绘学院, 江苏 连云港 222005;2.苏州科技大学 地理科学与测绘工程学院, 江苏 苏州 215009
摘要:
为提高遥感影像融合质量,提升资源一号(ZY-1 02D)高光谱遥感影像滨海湿地植被分类精度,提出将ZY-1 02D高光谱影像与空间分辨率为10 m的哨兵2号(Sentinel-2)影像进行Brovey融合,并通过搭建AlexNet卷积神经网络对ZY-1 02D高光谱影像和Brovey融合影像的滨海湿地植被进行分类,与支持向量机、随机森林和BP神经网络分类算法进行精度对比。研究结果表明:经Brovey融合后,AlexNet、支持向量机、随机森林和BP神经网络算法的植被分类总体精度分别提高15.60%、7.00%、14.80%和10.00%,Kappa系数提高了21.35%、9.93%、18.97%、12.85%;基于Brovey影像融合与AlexNet算法的植被分类精度最高,总体精度为92.40%,Kappa系数为89.42%。空谱融合配合AlexNet卷积神经网络有效解决了高光谱遥感影像在滨海湿地植被分类应用中精度较低的问题,为滨海湿地植被资源动态监测提供技术和方法支撑。
关键词:  ZY-1 02D  滨海湿地  Brovey影像融合  植被分类  AlexNet算法
DOI:10.11759/hykx20220614001
分类号:TP751
基金项目:国家自然科学基金项目(41506106);江苏省自然科学基金项目(BK20221397)
Vegetation classification combining spatial–spectral feature fusion based on remote sensing and AlexNet algorithm in a coastal wetland
XU Chen1, LU Xia2, SANG Yu1, HE Shuang1, LIU Jing-xuan1
1.School of Marine Technology and Geomatics, Jiangsu Ocean University, Lianyungang 222005, China;2.School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
Abstract:
The spatial structure information of ZY-1 02D hyperspectral remote sensing image loses a lot, which seriously affects its accuracy in coastal wetland vegetation classification. This paper proposed the application of Brovey fuse ZY-1 02D hyperspectral image with that of Sentinel-2 at a spatial resolution of 10 m and classified the coastal wetland vegetation of ZY-1 02D hyperspectral and Brovey fusion images by building an AlexNet convolution neural network. The accuracy of the classification algorithm was compared with that of the support vector machine, random forest, and back propagation neural network. The results showed that after the Brovey fusion, the overall accuracy of vegetation classification of AlexNet, support vector machine, random forest, and back propagation neural network was improved by 15.60%, 7.00%, 14.80%, and 10.00%, respectively, and the Kappa coefficient was improved by 21.35%, 9.93%, 18.97%, and 12.85%, respectively. The accuracy of vegetation classification based on Brovey fusion and AlexNet was the highest, with an overall accuracy of 92.40% and a Kappa coefficient of 89.42%. Space spectrum fusion and AlexNet convolution neural network effectively resolved the limitations of low accuracy of hyperspectral remote sensing image in the application of coastal wetland vegetation classification and provided technology and method support for the dynamic monitoring of coastal wetland vegetation resources.
Key words:  ZY-1 02D  coastal wetland  Brovey image fusion  vegetation classification  AlexNet algorithm
版权所有 《海洋科学》 Copyright©2008 All Rights Reserved
主管单位:中国科学院 主办单位:中国科学院海洋研究所
地址:青岛市市南区福山路32号  邮编:266071  电话:0532-82898755  E-mail:marinesciences@qdio.ac.cn
技术支持:北京勤云科技发展有限公司