引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  Download reader   Close
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 2315次   下载 3463 本文二维码信息
码上扫一扫!
分享到: 微信 更多
中国5 个海区不同群体毛蚶形态差异分析
陈蓉1, 刘建勇2, 唐连俊1, 饶颖竹1
1.湛江师范学院;2.广东海洋大学
摘要:
运用多变量形态度量学分析方法,采用10个形态性状,对中国5个海区5个野生毛蚶群体间的形态差异进行了比较研究。聚类分析和主成分分析结果表明:天津塘沽群体和山东青岛群体形态最为接近,广西北海群体的趋异程度最大。主成分分析建立了3个主成分——主成分1、主成分2和主成分3,其贡献率分别为:34.70%、19.80%、15.00%,积累贡献率为69.50%。 判别分析结果显示,5个群体间的形态差异显著(P < 0.01)。建立了5个群体毛蚶的判别函数,其判别准确率P1为45.45%~95.45%、P2为36.36%~95.45%,综合判别率为74.50%。
关键词:  毛蚶(Scapharca subcrenata)  地理群体  聚类分析  主成分分析  判别分析
DOI:
分类号:
基金项目:国家级星火计划备选资助项目(2008GA780049)
Morphological variations analysis of five different populations of Scapharca subcrenata in China
CHEN Rong,LIU Jian-yong,TANG Lian-jun,RAO Ying-zhu
Abstract:
Based on 10 morphological characters of populations of Scapharca subcrenata ,from Shandong, Tianjin, Guangdong, Hainan and Guangxi, multivariate morphometrics were used to investigate their morphological variations among the five different geographical populations. The results of cluster analysis and principal component analysis showed that the populations of Scapharca subcrenata form Tianjin Tanggu and Shandong Qingdao were rather similar in morphology, whereas Guangxi Beihai population different form other populations in morphology. The principal component analysis resulted in three principal components. The contributory ratios of the three principal components were 34.70 %, 19.80 % and 15.00 % respectively, and the cumulative contributory ratio was 69.50 %. The result of stepwise discriminant analysis revealed that the five populations differed significantly in morphology (P<0.01). The discriminant functions of five populations were established, and the discriminant accuracy was 45.45 %~95.45 % for P1 and 36.36 %~95.45 % for P2. The average discriminant accuracy was 74.50 %.
Key words:  Scapharca subcrenata  population  morphological variations  discriminant analysis
Copyright ©  Editorial Office for Marine Sciences Copyright©2008 All Rights Reserved
Supervised by: Chinese Academy of Sciences (CAS)   Sponsored by: Institute of Oceanology, CAS
Address: 7 Nanhai Road, Qingdao, China.  Postcode: 266071  Tel: 0532-82898755  E-mail: bjb@qdio.ac.cn
Technical support: Beijing E-Tiller Co.,Ltd.