引用本文:
【打印本页】   【下载PDF全文】   View/Add Comment  Download reader   Close
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 1641次   下载 886 本文二维码信息
码上扫一扫!
分享到: 微信 更多
BP神经网络精度估计及其在海洋油气资源预测中的应用
赵健1,2, 刘展1,2, 樊彦国1,2, 丁宁1
1.中国石油大学(华东) 地球科学与技术学院, 山东 青岛 266580;2.青岛海洋科学与技术国家实验室海洋矿产资源评价与探测技术功能实验室, 山东 青岛 266071
摘要:
在对BP算法进行深入分析的基础上,将测量数据处理与误差理论中的精度评定方法应用到BP神经网络的精度估计中,通过分别计算BP神经网络学习训练过程及预测过程的输出层中误差,实现对神经网络模型的精度评定。最后以海洋油气资源预测为例,结合实测资料建立了BP神经网络预测模型并分别进行了学习训练过程及预测过程的精度评定,以期为神经网络模型结构的优化设计提供有效参考,为提高神经网络模型的适用性提供科学依据。
关键词:  神经网络  BP算法  精度估计  中误差
DOI:10.11759/hykx20180427001
分类号:P631
基金项目:中央高校基本科研业务费专项资金(18CX02066A);山东省自然科学基金青年基金项目(ZR2014DQ008);中国石油科技创新基金项目(2015D-5006-0302)
Precision estimation of BP neural network and its application in ocean oil and gas resources prediction
ZHAO Jian1,2, LIU Zhan1,2, FAN Yan-guo1,2, DING Ning1
1.School of Geosciences, China University of Petroleum(East China), Qingdao 266580, China;2.Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:
Based on an intensive analysis of the back-propagation (BP) algorithm, we use the accuracy estimation method for surveying error data processing and the error theory to estimate the precision of a BP neural network. We calculate the mean square errors of the output layer in the learning and prediction processes of the BP neural network, respectively, to evaluate the accuracy of the neural network model. Lastly, taking ocean oil and gas resources prediction as an example, we use measured data to establish a BP neural network prediction model and calculate the precision of the learning and prediction processes of the BP neural network. The results indicate that the proposed precision analysis can provide an effective reference for the optical design of the BP network structure and provide scientific basis for improving the applicability of the neural network model.
Key words:  neural network  BP algorithm  precision estimation  error model
Copyright ©  Editorial Office for Marine Sciences Copyright©2008 All Rights Reserved
Supervised by: Chinese Academy of Sciences (CAS)   Sponsored by: Institute of Oceanology, CAS
Address: 7 Nanhai Road, Qingdao, China.  Postcode: 266071  Tel: 0532-82898755  E-mail: bjb@qdio.ac.cn
Technical support: Beijing E-Tiller Co.,Ltd.