引用本文: | 赵海池,刘志峰,王新安,包玉龙,刘圣聪,杨明超,闫鹏飞,马爱军.红鳍东方鲀(Takifugu rubripes)耐低温性状和生长性状遗传参数评估.海洋与湖沼,2024,55(2):517-525. |
| |
|
|
|
本文已被:浏览 520次 下载 0次 |
码上扫一扫! |
|
红鳍东方鲀(Takifugu rubripes)耐低温性状和生长性状遗传参数评估 |
赵海池1,2, 刘志峰1, 王新安1, 包玉龙3, 刘圣聪3, 杨明超1, 闫鹏飞1, 马爱军1
|
1.海水养殖生物育种与可持续产出全国重点实验室 中国水产科学研究院黄海水产研究所 中国-东盟海水养殖技术"一带一路"联合实验室(青岛) 山东青岛 266071;2.上海海洋大学水产与生命学院 上海 201306;3.唐山牧海水产养殖有限公司 河北唐山 063205
|
|
摘要: |
采用人工控温的方式, 对构建的31个F1红鳍东方鲀(Takifugu rubripes)全同胞家系开展低温胁迫实验, 获得耐低温性状低温累计存活时间(CDH), 基于混合线性模型分别开展耐低温性状和生长性状遗传参数评估,对每一性状是否需要考虑共同环境效应所构建的两种模型进行似然比检验。结果显示, 经似然比检验, 最终选用模型A和模型BF进行耐低温和生长性状遗传评估; 耐低温性状CDH遗传力为(0.27±0.08),属于中等遗传力; 体重BW遗传力为(0.36±0.13), 属于中等遗传力, 体长BL遗传力为(0.14±0.06), 属于低等遗传力, 经检验, 遗传力估计值均达到极显著水平(P<0.01)。CDH和体重、体长的遗传相关分别为(-0.40±0.22)和(-0.44±0.24), 表型相关分别为(-0.09±0.06)和(-0.16± 0.05), 均为负相关; 体重和体长之间的遗传相关为(0.92±0.05), 表型相关为(0.80±0.02), 呈正相关且结果极显著(P<0.01)。研究结果表明, 红鳍东方鲀的耐低温性状和生长性状都具有较好的改良潜力, 考虑到两性状间存在负遗传相关, 在开展耐低温选育时, 对首先不同性状进行品系选育, 然后利用品系间杂交培育出耐高温、生长快的新品种。该项研究首次完成了红鳍东方鲀耐低温性状的遗传参数评估, 为制订红鳍东方鲀耐低温选育育种规划提供了理论依据。 |
关键词: 红鳍东方鲀(Takifugu rubripes) 耐低温性状 遗传力 遗传相关 |
DOI:10.11693/hyhz20231100251 |
分类号:S965;Q789 |
基金项目:国家自然科学基金项目,32002362号;财政部和农业农村部:国家现代农业产业技术体系专项,CARS-47-G01号;国家重点研发项目,2022YFE0203900号;广东省科技计划项目,20221207号;中国水产科学研究院中央级公益性科研院所基本科研业务费专项资金,2020TD25号。 |
附件 |
|
EVALUATION OF GENETIC PARAMETERS FOR LOW TEMPERATURE TOLERANT TRAITS AND GROWTH TRAITS OF TAKIFUGU RUBRIPES |
ZHAO Hai-Chi1,2, LIU Zhi-Feng1, WANG Xin-An1, BAO Yu-Long3, LIU Sheng-Cong3, YANG Ming-Chao1, YAN Peng-Fei1, MA Ai-Jun1
|
1.National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology (Qingdao), Qingdao 266071, China;2.College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;3.Tangshan Muhai Aquaculture Co., Ltd., Tangshan 063205, China
|
Abstract: |
The culture area of Takifugu rubripes is primarily concentrated in the northern regions of China, where winter water temperatures fall significantly below the species' optimal growth range. Overcoming the challenges associated with indoor wintering, such as low survival rates and increasing costs, is essential to promote sustainable development in the industry. Consequently, there is an urgent need to develop new varieties with improved cold tolerance. In this study, we evaluated the response of 31 F1 full-sib families to low-temperature stress through controlled temperature manipulation. We quantified low temperature tolerant traits using cooling degree hours (CDH) as a trait. To assess the genetic parameters of both low temperature tolerant traits and growth-related traits, we established mixed linear models. The likelihood ratio is used to verify and compare the different models, and finally model A and model BF are selected. Our findings indicate that CDH heritability for low temperature tolerant trait was estimated at 0.27±0.08, reflecting a medium heritability. Heritability values for body weight (BW) as growth trait was 0.36±0.13 indicating a medium heritability. The heritability of body weight was 0.14±0.06, reflecting a low heritability. These estimates reached a highly significant level (P<0.01) upon testing. Genetic correlations between CDH and both body weight and body length were -0.40±0.22 and -0.44±0.24, respectively, with phenotypic correlations of -0.09±0.06 and -0.16±0.05, all indicating negative associations. In contrast, the genetic correlation between body weight and body length for growth traits was 0.92±0.05, with a phenotypic correlation of 0.80±0.02, demonstrating a strong positive relationship (P<0.01). Our results suggest that there is significant potential for improving both low temperature tolerant traits and growth traits in T. rubripes. When developing breeding plans, it is crucial to consider trait correlations. One strategy could involve selecting for low-temperature tolerance and fast growth separately and then crossing to create new varieties with composite traits. This study represents the first comprehensive evaluation of genetic parameters related to low-temperature tolerance in T. rubripes, offering valuable theoretical support for the development of new varieties with improved cold tolerance. |
Key words: Takifugu rubripes low temperature tolerant traits heritability genetic correlation |
|
|
|
|
|